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ABSTRACT

An algorithm to recover closed boundaries from disconnected
boundary segments is presented. There is a close relation between
the medial axis transform and the Voronoi diagram. Here we intro-
duce a geometric labeling scheme for the Voronoi diagram of boun-
dary segments, and recover the medial axes of closed boundaries
by using the labeled Voronoi diagram. Although all examples given
in this paper are pictures of straight line segments in the two-
dimensional Euclidean plans, the basic idea is immediately appli-
cable to digital pictures with curved segments.
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1. Introduction

The problem discussed in this paper is how to recover closed

boundaries from a set of spatially separated boundary segments.*

A commonly used method for this problem is curve linking. Al-

though we can incorporate various geometric and sometimes gray

level properties to select segments for the linking, these fea-

tures are in essence very local. Since the closure of a boundary

is a global property, some global criterion to re-evaluate local

linking is required. As a result, an algorithm for this problem

usually becomes complicated, and it is inevitable to introduce

many heuristics (heuristic evaluation functions), which obscures

the performance of the algorithm.

The algorithm presented in this paper does not use a curve

linking scheme but recovers the medial axes of closed boundaries

from the Voronoi diagram of the given segments. Fig. 1 shows

our basic approach to closed boundary detection. The Voronoi

diagram may be less local than the linking because a segment

can interact with others at large distances through the Voronoi

" diagram. As will be discussed below, the Voronoi diagram rep-

resents various geometric properties such as the shapes of seg-

ments and geometric relations among them, whereas geometric pro-

perties of their endpoints are the major characteristics used

in a curve linking algorithm. In this sense, using the Voronoi

diagram, we will be able to incorporate a richer set of geometric

properties for closed boundary detection. (Of course, since

- *Gnerally, the input boundary segments form multiple closed
boundaries.
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information about shapes of the closed boundaries is missing,

some heuristics are inevitable to recover them.)

The Voronoi diagram was originally defined for a point set

in the plane (or in multi-dimensional space) to partition the

space into disjoint subspaces. Each subspace is defined as the

•-.I set of locations closest to a certain data point and can be

considered as the neighborhood of that point. As is well known,

the Voronoi diagram of a two-dimensional point set consists of

convex polygons whose boundaries are defined by parts of the per-

pendicular bisectors between two points. (At marginal locations,

the polygons become open.) We will call such polygons (subspaces)

Voronoi regions and their edges Voronoi edges. Voronoi vertices

are defined as locations where more than three Voronoi regions

meet.

Recently, an O(N log N) algorithm to compute the Voronoi dia-

gram of N points has been developed [1], and fast algorithms to

construct the Voronoi diagram of a set of line segments (and

circles) have also been proposed [2] [3]. In digital picture

processing, algorithms for calculating the digital Voronoi diagram

of a set of connected components have been proposed [4] [5].

Several papers have discussed applications of the Voronoi diagram

to clustering and shape analysis of dot patterns [6] [7] [8].

Informally, the process of generating the Voronoi diagram

of a set of objects can be described as follows. Imagine that

the space is filled with some flammable material and a fire is

started at each object. (If an object is not a point, the fire

is started at each point on the object's boundary.) The fire



spreads in all directions with equal speed. Then the locations

where fire fronts from different objects meet form the Voronoi

diagram. (Each fire front has a unique label corresponding to

its originating object.)

This definition of the Voronoi diagram is exactly the same

as the "grassfire" definition of the medial axis transform [4]

[9]. The differences between them are:

(a) The Voronoi diagram is defined for a set of disjoint

objects, while the medial axis transform is defined for

a closed boundary.

(b) The medial axis contains the distance from each point

on it to the nearest boundary.

In fact, Lee (101 proposed a fast algorithm to compute the medial

axis of a polygon by using the Voronoi diagram. Fischler and

Barrett [4] gave different labels to parts of a closed boundary

and applied "Voronoi expansion" to generate a smooth medial axis

of the boundary.

Our basic idea for recovering closed boundaries from a set

of disjoint segments is as follows (Fig. 1). For a closed boundary,

the medial axis is entirely embedded in the Voronoi diagram (10].

If the disjoint segments given as input data are points of

closed boundaries,* their Voronoi diagram may contain information

about the medial axes of the original closed boundaries. If we

can extract the medial axes as subsets of the Voronoi diagram, we

can easily recover the closed boundaries by using the "inverse"

*In this paper, we assume no noise segments are included. This as-
sumption may not be unreasonable if we use a very high threshold to
extract segments from the given picture.



medial axis transform. Of course, since boundaries are destroyed

by gaps, medial axes extracted from the Voronoi diagram are ap-

proximations of the original ones, and some ambiguities may appear

during the extraction process.

In what follows, we will explain the algorithm for extracting

medial axes from the Voronoi diagram of a set of straight line

segments in the two-dimensional Euclidean plane. The e tension

to curved segments will be considered in the discussion.

-V. ,
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2. Geometric labeling of Voronoi edges

Suppose we are given a pair of line segments. In general,

their Voronoi diagram is as shown in Fig. 2, where the space

is divided into two half spaces (Voronoi regions) by a continu-

ous curve (Voronoi edge). (Note that all figures in this paper

are only for illustrative purposes; they were not obtained from

real data.) The Voronoi edge is the locus of points at the

same distance from the line segments, and is composed of five

segments. According to the notation used in [2], these segments

h are B(a,c), B((a,b),c), B((a,b),(c,d)), B((a,b),d), and B(b,d).

Here a,b,c, and d denote the endpoints of the line segments,

(a,b) and (c,d) open line segments, and B(ei,e j ) is the locus

of points equidistant from e. and ej. B(endpoint,endpoint) is the

perpendicular bisector of the line segment connecting the two end-

points, B(open line segment, open line segment) the angular bi-

"" sector of the angle defined by the two line segments, and B(end-

point, open line segment) the parabola whose focus is the endpoint.

Lee [2] discussed several geometric properties of the Voronoi dia-

gram of a set of line segments.

As is obvious from this example, the Voronoi diagram represents

various geometric properties of the pairs of line segments. We

will be able to use these properties for shape analysis. But,

since each Voronoi edge is composed of several segments represent-

ing different geometric properties, we cannot regard it as a unit

for shape analysis. Our fundamental idea in this paper is to par-

tition each Voronoi edge into small segments by using the geometric

labels (B(a,c), B(c,(a,b)), etc.) and to consider those segments



as elements for processing. We will use three labels for seg-

ments, and call them P-P (point to point), P-L (point to line),

and L-L (line to line) segments instead of B(a,c), B(c,(a,b))

and so on.

As shown in Fig. 2, a Voronoi edge changes its label when

it crosses over one of the straight lines which are perpendi-

cular to the line segments at their endpoints. These straight

lines are loci of points equidistant from the endpoints and the

(open) line segments. The rectangular regions bounded by two

straight lines attached at two endpoints of a line segment rep-

resent "neighborhoods" of the endpoints and the line segment.

A Voronoi edge is given either a "point" or "line"label from a

line segment depending on which rectangular region it is located

in. (The other label is given from the other line segment de-

fining the Voronoi edge.)

The situation illustrated in Fig. 2 is just one example of

the geometric relations between two line segments. Fig. 3 shows

other examples, where the labeling changes according to the geo-

metric relation between the segments. We will be able to extract

various geometric properties by using this labeling scheme, such

as symmetry, collinearity, parallelism, and so on.

An important property of this labeled Voronoi diagram is

[Theorem 1]. Let L,,L 2,L3, and L4 denote four half straight

lines which are perpendicular to a line segment t at its end-

points (Fig. 4). The border of the Voronoi region of t inter-

sects at most once with each of LI-L4 .

-~ ~ V -.-- ~~4*-



Proof. Suppose the border of the Voronoi region intersects twice

with LI, and let P1 and P2 denote the intersections and e an

endpoint of Z as shown in Fig. 4. Draw circles, C1 and C2, cen-

tered at p, and P2 with radi of Pe and Pe, respectively, where

Ple and P2e denote distances between two points. Then the cir-

cle C1 entirely includes C2 except for e. This contradicts

the definition of the Voronoi diagram; in order for P2 to be on

the Voronoi diagram, there must be at least one point P on C2

which belongs to another line segment. Then, since PI<P--e

P1 cannot be a point on the border of the Voronoi region of 1.

(P-e is the shortest distance between P1 and t, and P1 is nearer

to P than Z.)

In this paper we do not describe an algorithm to realize

the geometric labeling and assume that the Voronoi diagram is

labeled and that each point on the diagram contains the distance

to the nearest line segment.

4"



3. Basic considerations for the algorithm

3.1 Case 1: Two line segments

Suppose the two line segments shown in Fig. 2 are parts of

a closed boundary. What is a reasonable estimate of the medial

axis of the boundary? It seems to be natural to consider an L-L

segment (i.e., B((a,b),(c,d))) of the Voronoi edge as a part of

the medial axis, because it is defined by the parts of the boun-

dary in exactly the same way as the medial axis transform. On

the other hand, P-P and P-L segments may be considered as side-

effects of breaking the continuous boundary.

Fig. 5 shows the result of expanding the L-L segment in

Fig. 2 by using distances recorded on the points of the segment

(the "inverse" medial axis transform). The expanded region

shares its boundary with the line segments and will intersect with

no line segment even if there are many other line segments. (This

is a fundamental property of the Voronoi diagram, and the proof

is trivial.)

As shown in Fig. 5, some parts of the line segments are not

included in the boundary of the expanded region. This is because

P-L segments were excluded in the expansion. If we include P-L

segments as well as L-L segments in the medial axis, the expanded

region boundary will include the entire line segment as its parts.

But, if there are other line segments, the region may intersect

with some of them. Therefore, in order to determine whether or

not P-L segments are to be included in the medial axis, we have

to consider geometric relations to other line segments.

" ' ,# " ". "..' ; , "..'.." " ., ,-,'- t -,; . _ -. " " -- . . -•. . . ,.,,' . ' ' ' ' .
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Based on these observations, the following conjecture may

be reasonable:

[Conjecture] Parts of the medial axis of a closed boundary are

preserved as L-L segments in the Voronoi diagram even if the

boundary is broken into disjoint segments.

*. This conjecture holds in cases where the erased (missing)

- parts of a boundary are small and simple. Our algorithm uses

this conjecture as its basis. (Section 5 includes a discussion

about this conjecture.)

.4
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3.2 Case 2: Convex boundary

Here we assume the line segments are parts of a convex poly-

gon. In this case, all L-L segments in the Voronoi diagram are

entirely included in the original polyqon, and most of the line

- -segments form L-L segments in the Voronoi diagram.

Another interpretation of an L-L segment is that the region

expanded from it specifies a conve. area defined by two line

segments forming the L-L segment (see Figs. 2 and 3). Therefore,

in the case of a convex boundary, the regions expanded from L-L

segments usually overlap with each other. If the gaps on the

boundary are small, all such regions are merged into one connected

- region. This merged region is a "conservative" estimate for the

original closed boundary, where "conservative" means that the

entire region is included in the interior of tie boundary.

Since the L-L segments in the Voronoi diagram are usually

not connected, in order to extract (estimate) the medial axis

from the Vorcnoi diagram, it is necessary to connect them into

a connected graph by using other segments in the Voronoi diagram.

In the case of a convex boundary, the connection of L-L segments

can be easily performed by tracking Voronoi edges from one L-L

segment to another until all L-L segments are connected. Then

_g the medial axis is extracted as a connected graph on the Voronoi

diagram which includes all L-L segments. However, if a concave

boundary and/or multiple boundaries are included in a picture,

the simple tracking algorithm is not sufficient.

0
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3.3 Case 3: Concave polygon

Fig. 6 shows an example of the labeled Voronoi diagram of a

concave boundiry. In this case, L-L segments are formned on both

sides of the boundary. This is beco'ise an L-L segment is just

a local geometric property showing a 7onvex area defined by two

line segments. Some global process is necessary to determine

to which side of the boundary each convex area belongs.

In order to fill gaps between ]inie segments, it might seem

reasonable to link the endpoints of two line segments forming

an L-L segment. But as shown in Fig. 6, L-L seqmenis are

generated not only by line segments "consecutive" along an ori-

ginal boundary but also by a pair of facing line segments on

the opposite sides of the boundary. Therefore, such a linking

process would unnaturally divide the boundary.

In short, L-L segments in the Voronoi di .gram are important

keys for recovering the medial axis, but some global process is

necessary for checking consistency among them (that is, whether

they specify the inside or the outside of a boundary).

' I



*~~~~7 I_ 7- 1. 1.... . .. . ..-

k '. 4. Algorithm

We will now describe our algorithm to extract medial axes

from the Voronoi diagram of a set of line segments. The algo-

S.-rithm usually extracts multiple connected subgraphs from the

Voronoi diagram and regards them as the medial axes of closed

boundaries.

We assume that the Voronoi edges are labeled and segmented

into L-L, P-L, and P-P segments, and use the following notation.

L {ele 2 ,... } set of line segments

"ill Pi2 endpoints of a line segment 4.

LL = {LLijh h=l or 2} set of L-L segments, where LLijhhdenotes an L-L segment between

f. and t.*,**

PL {PLihj h=1 or 2} set of P-L segments, where PLih j

denotes the P-L segment between

Pih and .*

PP = PPihjk h,k=l or 2 set of P-P segments, where

PP denotes the P-P segmentihjk*
between Pih and P

ih jk

Since the ordinary algorithms for constructing the Voronoi dia-

gram do not use these geometric labels, we have to modify them

to obtain the labeled Voronoi diagram.

* From Theorem 1, these symbols are unique.

** Note that at most two disjoint L-L segments can be formed be-
tween a pair of line segments (see Fig. 3(b)).



4.1 STEP 1: Erasing redundant P-P segments

There are many obviously redundant P-P segments which ex-

tend to infinity. We can remove these segments from the Voronoi

diagram. Note that neither L-L nor P-L segments extend to

infinity, because the rectangular regions where they are in-

cluded are "bounded" (see Fig. 3). (In the case of a bounded

picture, we can remove these P-P segments touching picture edges,

assuming that there is enough open space around a set of line

segments.)

If a P-P segment PPihjk extends to infinity, we can connect

Pih and Pjk by a straight line segment without intersecting any

other line segments. By connecting all pairs of endpoints that

form P-P segments extending to infinity, a continuous convex

hull for the set of line segments is produced. This property

is immediate from Theorem 2 in [2]. The addition of these new

line segments to an original set of line segments facilitates

later processing:

(i) The addition should not cause any artifacts in the

method of medial axis extraction (closed boundary

detection).

(ii) Many new L-L segments are produced by connecting Pih

and Pj which gives more clues for medial axis ex-

traction.

(iii) By adding new line segments, open boundaries like

Fig. 6 become closed, so that we can process such

open boundaries as well as closed boundaries by our

algorithm.

Therefore, we include these line segments into the data set, and
cr~compute the Voronoi diagram of the new data set.

9.. ' .. . - • - . -.-.- -, , ' . -' ' ' . .'. . .% ' ' . '. . . , . ,, . - . , . - , . . , . . . _



4.2 STEP 2: Finding relations among L-L segments

The next step is to extract all L-L segments and to find

geometric relations among them. We define two relations

among L-L segments:consistent and contradicting. The consis-

tent relation means that L-L segments with this relation should

be connected into one medial axis, and the contradicting rela-

tion means that L-L segments with this relation should not be

connected into one medial axis.

These two relations are established for a pair of L-L seg-

ments sharing a common line segment, respectively, that is,

LL and LL such that i=p, i=q, j=p, or j=q. If two regions
ijh Lpqk

expanded from LL and LLpqk dominate the different sides of the

"- line segment, we say LLij h and LLpqk are mutually contradicting

because if they are included in a medial axis, the line segment

becomes a "crack" in the region generated from the medial axis.

If the regions expanded from LLij h and LLpqk are located on the

same side of the line segment, in the case of cwnsistent L-L segments,

* "then they should be connected into a medial axis. There are sev-

* eral ways to discriminate the above two situations:

(i) Use the coordinates of a given point on an L-L segment and de-

cide on which side of a line segment it is located.

(ii) Give two different labels to a line segment which represent

the two sides of the line segment, respectively, and con-I. struct the labeled Voronoi diagram.

(iii) Use the following Theorem, and decide on a relation between

L-L segments by tracking the Voronoi diagram.



[Theorem 2]. Suppose two L-L segments share a line segment e

If they are consistent, there must be a path on the Voronoi dia-

gram connecting them which consists of LL or PL If thereIqh jkI-

is no such path, then they are contradicting.

Proof. See Fig. 7. Consistent L-L segments sharing eI must be

located in one of the two rectangular spaces defined by tI and

two perpendicular straight lines at its endpoints. Since the

border of the Voronoi region of I is continuous, there must be

Voronoi edges connecting the L-L segments in that rectangular

space. From Theorem 1, such Voronoi edges must be labeled with

LL Iqh or PL jkI because they are nearer to ZI than to its endpoints.

The proof for contradicting L-L segments follows trivially from

the above proof.

Note that in the special case as shown in Fig. 3(h), a pair

of L-L segments satisfy the consistent relation as well as the

contradicting relation, depending on from which of the two line

segments we consider the relations. In this case, we use the

contradicting relation and do not regard the two L-L segments as

consistent. Discussion about more complicated situations will be

given in Section 5.

Since method (iii) gives a path on the Voronoi diagram to be

included in the medial axis as well as discriminating between the

two situations, we use this method for the algorithm. This path

checking process can be easily realized by using a graph, where

each node represents a labeled segment and links between nodes

represent mutual connections between labeled segments on the

Voronoi diagram.

-S f N f



Using the consistent relation among L-L segments, we can

partition the set of L-L segments into disjoint subsets

(LLi) : LL=IILLiLLiOLLJ=(i'j). To connect those L-L segments

in the same subset by Voronoi edges is the purpose of the next

step. The contradicting relations will be used as constraints

for extending consistent L-L segments to medial axes.

Note that if our basic conjecture holds, no pair of L-L

segments in the same subset have the contradicting relation.

The following algorithm assumes this condition. See Section 5

for the processing in case this assumption is invalid.

.4.
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4.3 STEP 3: Extending L-L segments

Since L-L segments are small parts of medial axes and are

usually disconnected, we have to extend them to form connected

medial axes. As explained in the previous section, L-L segments

included in the same subset (sharing a line segment t.I) can be

connected via PLjkI segments. By including such PLjkI in a sub-

set, each subset comes to correspond to a connected subgraph of

the Voronoi diagram. Note that a subgraph can have a loop

when an original closed boundary has another boundary in its in-

terior.

Using the same idea, each L-L segment LLIJ P can be extended

to the adjacent PLihI and PLjkJ. But in order to prevent con-

tradicting subgraphs from being connected into one subgraph, we

must not add a series of P-L segments which connect contradicting

L-L segments. (See the remark following the proof of Theorem 2.)

If some subgraphs become connected by this extension, we merge

them into one subgraph, and define contradicting relations among

the subgraphs.

i2



4.4 STEP 4: Augmenting the set of subgraphs

By STEP 1-STEP 3 a set of connected subgraphs of the labeled

Voronoi diagram consisting of L-L and P-L segments have been ex-

tracted. They define convex areas in the space bounded by the

line segments (Fig. 8). We can use these subgraphs to segment

complex polygons into simple convex polygons.

All L-L segments are included in the subgraphs. In most

cases, all P-L segments are also merged into them, because P-L

segments are usually adjacent to L-L segments. In special

cases such as shown in Fig. 9, however, some P-L segments are

isolated and not included in any subgraph. Since these isolated

P-L segments can also be considered as representing convex areas,

we process them in the same way as L-L segments: merge adjacent

* ones into one subgraph and establish contradicting relations to

others (other connected P-L segments and the set of connected sub-

graphs extended from L-L segments). Here again, we need a special

process in the situation as shown in Fig. 3(h): regard a P-L seg-

ment connecting a pair of contradicting L-L segments as an isolated

subgraph, and do not connect it to the adjacent L-L segments. Then,

a set of connected subgraphs on the Voronoi diagram including all

L-L and P-L segments is obtained. Let G={G i} denote this set.

Usually, the subgraphs are disjoint on the labeled Voronoi dia-

* gram, and G and G. (ij) have a contradicting relation if they

include L-L or P-L segments defined by the same (open) line seg-

ment (not endpoint).

%



4.5 STEP 5: Removing P-P segments on a path connecting contra-

dicting subgraphs

Since the labeled Voronoi diagram is connected even after

STEP 1, there are Voronoi edges (usually P-P segments) con-

necting contradicting subgraphs. Thus, if a P-P segment dir-

ectly connects two contradicting subgraphs, we regard it as

redundant (side-effect of a gap) and remove it. By this pro-

cess, some subgraphs are isolated from the others (Fig. 10).

Since all contradicting subgraphs are not directly connected by

a single P-P segment, some of them are still connected.

In order to disconnect contradicting subgraphs, we first

find a path connecting two contradicting subgraphs Gi and Gj.

It is easy to find the path to be disconnected by following

the border of the Voronoi region of the line segment II so

that LLIQ h or PLjk I are included in both of Gi and Gj (Fig. 11).

It is obvious that this path consists of P-P segments and/or

isolated P-L segments (no LL-segment is included).

If the path consists of P-P segments alone, we cannot use

the contradicting relation to determine which one is to be re-

moved. Fig. 12 illustrates a typical example of this situation.

One heuristic to resolve this conflict is as follows:

(i) Expand Gi and Gj to regions R. and Rj using the distances

on them.

(ii) Let Pk (k=l-m) denote the endpoints of P-P segments on

the path. P1 and Pm are endpoints of Gi and Gj respec-

tively. We assume the numbering is done from Gi to Gj.

Find a k* that satisfies the following conditions:

• i"
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Ck* nRi>Ck*NRj and Ck*+l fRi<Ck*+InR.

Here C denotes a circular region expanded from P Since C1k1

and Ck are entirely included in R. and R. respectively, there

must be a k* satisfying the above inequalities (2k*_-m-l)

(iii) Remove a P-P segment between P and P

Although process (ii) is asymmetric, this may not be crucial.

If the path includes P-L segments, local processing along

the border of the Voronoi region of t alone is not sufficient

because the P-L segments have contradicting relations to other

subgraphs. Our algorithm uses the following heuristics. Here

Pk (k=l,...,m) denote endpoints of labeled (P-P or P-L) segments

on the path P1 and P denote the endpoints of two contradict-

ing subgraphs Gi and G. respectively (Fig. 10).

(i) Starting from P1 (P

if PIP2(PmP mI is a P-P segment, then merge it to Gi

(Gj), where P1P2 denotes the labeled segment between P1

and P2.

if P1P2(PmPmI ) is a P-L segment, then

(i-1) if the P-L segment belongs to a subgraph contra-

dicting Gi (G.), then stop.
1)

(i-2) if the P-L segment belongs to a path connecting G.

3 (G) and Gi(Gj), then stop, whereGi(G j) denotes a

contradicting subgraph of Gi(G.) (see Fig. 13).

(i-3) otherwise, merge the P-L segment to Gi(Gj).

U (ii) Repeat (i) until the merging process stops or comes up

with Pm(P

.4 (The above process is performed from P1 and Pm respectively.)

.- .-
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(iii) Let P. and P. denote endpoints of the extended subgraphs

on the path (1-i, j-m).

(iii-1) If i<j, remove Pi 1 Pi and P P These segments musti-1 i i j+1*

be P-P segments; all adjacent L-L and P-L segments were

merged into connected subgraphs by STEP 3 and 4 (except

in the special case shown in Fig. 3(h)), and contradict-

ing relations are defined among the subgraphs. There-

fore, the segment merged just before the above process

steps must be a P-P segment. (For the same reason,

i~'j. )

(iii-2) If i>j, the segments between P. and Pi are included in

both extended subgraphs (Fig. 3(h) is included in this

category). This situation is very unusual, and there

are several possible solutions.

(a) Regard the segments between P. and Pi as an inde-

pendent subgraph: if P P and PiP are P-P
i j+l nd l ar -

segments, then remove them. Otherwise put a spe-

cial mark at P. and P. showing the endpoints of

the subgraphs.

(b) Merge the shared segments to either G or G. by
j

using the same process as used before (expand ske-

letons and compare area sizes of overlapping re-

gions).

(c) Remove the shared segments.

Since it is usually easier to merge divided objects than

to split a merged object, (a) and (c) may be better than

(b).
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By applying the above process to each path connecting

contradicting subgraphs, the entire Voronoi diagram

is divided into disjoint subgraphs. In other words,

the subgraphs extracted in STEP 3 and 4 are usually

merged if they are not contradicting. We can

then regard each subgraph as a medial axis.
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4.6 STEP 6: Closed boundary generation

In order to complete the boundaries, we use the following

post-processing.

(i) Expand each medial axis into a region using distances

on the axis.

(ii) Track the boundary of the expanded region and order

the line segments and their endpoints touching the bound-

ary according to the order of the boundary tracking.

(If a line segment is one included at STEP 1, remove it

from the ordered set of line segments).

(iii) Apply a gap filling algorithm like [111 to each gap be-

tween successive endpoints of line segments.

Since the shape of the medial axis is deformed in neighborhoods

of qaps, it is difficult to obtain smooth gap filling from the

medial axis.

S.

I
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5. Discussion

In principle, our algorithm first extracts convex areas

bounded by line segments and merges them unless they are con-

tradicting. The detection of convex areas is based on exact

geometric relations among line segments, whereas the merging

process incorporates several heuristics. In this sense, our

method is still too local to obtain reasonable results in com-

plex situations. If a model of object shape is known, it may

be better to control the merging process by using the model.

Another interpretation of the basic conjecture described in

Section 3.1 is that a convex area defined by an L-L segment must

belong properly to either the interior or exterior region of

a closed boundary. This assumption usually holds if the gaps

at the corners of a boundary are small. However, if an original

closed boundary includes another closed boundary in its interior,

(a region with a hole) and the gaps at the corners are very large,

some areas defined by L-L segments will be included in both in-

terior and exterior regions. In other words, "false" L-L segments

are generated (Fig. 14(a)). As shown in Fig. 14(b), false L-L seg-

ments cause conflict between the consistent and contradicting

relations. (Fig. 3(h) was the simplest example.) In other words,

L-L segments in a consistent subset (defined in STEP 2) will have

the contradicting relation. Since the contradicting relation is

stronger than the consistent relation, we cannot use the consistent

relations to merge the L-L segments in this case. If we enforced

the consistent relation in the case of Fig. 14, we would obtain

an ambiguity in the merging process: with which of A and C should

B and D be merged? Therefore we need to add another step in the

algorithm:

. .. ". ... .. .



STEP 2.5 If any pair of L-L segments in a consistent subset sat-

isfies the contradicting relation, cancel the subset and change

each consistent relation in the subset into the contradicting

relation. Note that mutually connected L-L segments are regarded

as a consistent subset.

Cancellation of the subset is not enough, because B and D

would be merged with A or C (by STEP 3) depending on the order

of the merging process. STEP 5 in the algorithm determines the

merging of P-L segments among these subgraphs. Since the algo-

rithm does not know the "correct" global boundary to be detected,

it is more reasonable to produce a set of partial results than

to overmerge them without a clear criterion. By STEP 2.5, our

algorithm can detect strange situations where its basic assumption

is invalid. Therefore, it is possible to use this information to

correct the input data by activating picture processing programs.

For example, since subgraphs A, B, C, and D in Fig. 14 cause a con-

flicting situation, we can examine the related line segments z2,

t' 6' and 97 using picture processing programs. We should then

be able to extend the short line segment £6 or to remove it as noise.

Note that our algorithm works well even for data with large

gaps unless false L-L segments are generated. (Fig. 15).

It may be interesting to compare our method to curve linking.

As explained in Section 2, our method relies on th-t L-L segment de-

fined by a pair of line segments. Therefore, if two line segments

do not form an L-L segment as shown in Figs. 3(b)(d), no useful

geometric relation is defined between them. In other words, the

convex areas defined by line segments are key characteristics in



our closed boundary detection process. On the other hand,

Figs. 3(b)(d) represent good clues for curve linking. The

evaluation function for local curve linking gives high con-

fidence in these cases, while it gives relatively low values

to the other cases shown in Fig. 3. That is, its key feature

is smooth continuation between segments. In this sense, our

method and curve linking are mutually complementary. A com-

bination of these methods should give more reasonable perfor-

mance: first apply curve linking to obtain long curve segments,

then use our method to detect closed boundaries. The long

curve segments greatly facilitate our algorithm.

Although the algorithm described in this paper is for a

set of line segments, it is also applicable to curve segments.

In this case, we need some preprocessing; if a curve segment

includes sharp corners, we divide it into smaller segments at

the corners and give a different label to each segment.

As is well known, the medial axis transform has an intrin-

sic problem: the structure of the medial axis is sensitive to

noise. The Voronoi diagram is also subject to the same problem,

and sometimes its structure is greatly changed by adding noise

(noisy segments) and changing the locations of data segments.

One way to avoid noisy segments is to use a very strict threshold

for extracting data segments. Another method is to extract long

segments by curve linking and remove shorter ones. As mentioned

above, it is also possible to use feedback analysis to examine

data segments which cause a conflicting situation between the



consistent and contradicting relations, because additional

noisy segments usually lead to such a conflict. Although

our method is sensitive to the locations of the endpoints

L of the line segments, detecting long segments by linking

can reduce this sensitivity.
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6. Conclusion

We have proposed an algorithm to extract the medial axis

from the Voronoi diagram of a set of line segments. The

basic idea was to give geometric labels to parts of the

-A Voronoi edges so that precise geometric relations between line

segments may be encoded in the Voronoi diagram. This idea

is also applicable to the Voronoi diagram of a set of points

and blobs to detect its "perceptual" boundaries. As mentioned

in Section 4, our algorithm can be immediately used to parti-

* tion a complex region into a set of simple convex parts. Al-

*- gorithms to compute the labeled Voronoi diagram and to extract

medial axes in a digital picture are currently under implemen-

- "tation.
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